Giải bài tập Bài 8 trang 89 Toán 8 Tập 1 | Toán 8 - Chân trời sáng tạo
Hướng dẫn giải chi tiết từng bước bài tập Bài 8 trang 89 Toán 8 Tập 1. Bài tập cuối chương 3 Định lý Pythagore. Các loại tứ giác thường gặp. Toán 8 - Chân trời sáng tạo
Đề bài:
Bài 8 trang 89 Toán 8 Tập 1: Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm của BF và CD, N là giao điểm của DE và AB. Chứng minh rằng:
a) M, N theo thứ tự là trung điểm của CD, AB;
b) EMFN là hình bình hành.
Đáp án và cách giải chi tiết:
a) • Ta có: AE = EF = FC nên (1)
Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành.
Khi đó O là trung điểm của AC và BD.
Suy ra (2)
Từ (1) và (2) suy ra hay
• Xét DBCD có CO là trung tuyến của tam giác và nên F là trọng tâm của DBCD.
Do đó BF hay BM cũng là đường trung tuyến của DBCD.
Suy ra M là trung điểm của CD.
• Chứng minh tương tự đối với DABD ta có E là trọng tâm của tam giác.
Do đó DE hay DN cũng là đường trung tuyến của DABD.
Suy ra N là trung điểm của AB.
b) • Do M là trung điểm của CD (câu a) nên
N là trung điểm của AB (câu a) nên
Mà AB = CD và AB // CD (do ABCD là hình bình hành)
Suy ra NB = MD và NB // MD.
Xét tứ giác BMDN có NB = MD và NB // MD
Do đó BMDN là hình bình hành.
Suy ra BM // DN và BM = DN.
• Ta có E là trọng tâm của DABD nên
F là trọng tâm của DBCD nên
Mà DN = BM (chứng minh trên) nên EN = FM.
• Xét tứ giác EMFN có EN = FM và EN // FM (do BM // DN)
Suy ra EMFN là hình bình hành.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao