Giải bài tập Bài 30 trang 63 SBT Toán 12 Tập 2 | SBT Toán 12 - Kết nối tri thức (SBT)

Hướng dẫn giải chi tiết từng bước bài tập Bài 30 trang 63 SBT Toán 12 Tập 2. Đề minh họa kiểm tra cuối học kì II. SBT Toán 12 - Kết nối tri thức (SBT)

Đề bài:

Góc quan sát ngang của một camera là 130°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 2) và chiếu thẳng về phía mặt phẳng (P): x + 2y – 2z + 5 = 0. Hỏi vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có diện tích bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng thập phân thứ nhất)

A. 57,7.

B. 57,8.

C. 56,7.

D. 56,8.

Đáp án và cách giải chi tiết:

Đáp án đúng là: B

Gọi H là hình chiếu của C trên mặt phẳng (P).

Khoảng cách từ điểm C tới mặt phẳng (P) là d(C; (P)) = CH =  = 2.

Vùng quan sát là hình tròn tâm H bán kính HA.

Ta có tam giác AHC cân tại C có CH vuông với đáy nên  =  = 65°.

Do đó, AH = CH.tan65°.

Vậy diện tích vùng quan sát là: π.(CH.tan65°)2  ≈ 57,8.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SBT Toán 12 - Kết nối tri thức (SBT)