Giải bài tập Bài 19 trang 60 SBT Toán 12 Tập 2 | SBT Toán 12 - Kết nối tri thức (SBT)

Hướng dẫn giải chi tiết từng bước bài tập Bài 19 trang 60 SBT Toán 12 Tập 2. Đề minh họa kiểm tra cuối học kì II. SBT Toán 12 - Kết nối tri thức (SBT)

Đề bài:

Cho hai mặt phẳng (α): 3x – 2y + 2z + 7 = 0, (β): 5x – 4y + 3z + 1 = 0. Phương trình mặt phẳng đi qua gốc tọa độ O đồng thời vuông góc với cả (α) và (β) là:

A. 2x – y – 2z = 0.

B. 2x – y + 2z = 0.

C. 2x + y – 2z = 0.

D. 2x + y – 2z + 1 = 0.

Đáp án và cách giải chi tiết:

Đáp án đúng là: C

Ta có: nα = (3; −2; 2), nβ = (5; −4; 3) lần lượt là hai vectơ pháp tuyến của mặt phẳng (α) và (β).

n = nα,nβ=-22-43;2335;3-25-4 = (2; 1; −2) là vectơ chỉ phương của mặt phẳng chứa O và vuông góc với cả (α) và (β).

Vậy phương trình mặt phẳng cần tìm là: 2(x – 0) + 1(y – 0) – 2(z – 0) = 0

⇒ 2x + y – 2z = 0.

Nguồn: giaitoanhay.com


Tổng số đánh giá:

Xếp hạng: / 5 sao

Giải bài tập SBT Toán 12 - Kết nối tri thức (SBT)