Giải bài tập Bài 23 trang 61 SBT Toán 12 Tập 2 | SBT Toán 12 - Kết nối tri thức (SBT)
Hướng dẫn giải chi tiết từng bước bài tập Bài 23 trang 61 SBT Toán 12 Tập 2. Đề minh họa kiểm tra cuối học kì II. SBT Toán 12 - Kết nối tri thức (SBT)
Đề bài:
Trong không gian Oxyz, cho hai điểm A(2; 4; 1), B(−2; 2; −3). Phương trình mặt cầu đường kính AB là
A. x2 + (y – 3)2 + (z + 1)2 = 9.
B. x2 + (y – 3)2 + (z − 1)2 = 36.
C. x2 + (y + 3)2 + (z − 1)2 = 9.
D. x2 + (y – 3)2 + (z + 1)2 = 36.
Đáp án và cách giải chi tiết:
Đáp án đúng là: A
Mặt cầu đường kính AB có tâm là trung điểm của AB. Tọa độ tâm I với I là trung điểm của AB là:
⇒ I(0; 3; −1).
Bán kính mặt cầu là:
R = IA = = 3.
Vậy phương trình mặt cầu đường kính AB là:
x2 + (y – 3)2 + (z + 1)2 = 9.
Nguồn: giaitoanhay.com
Tổng số đánh giá:
Xếp hạng: / 5 sao
Loading...
Bài tập liên quan:
Giải bài tập SBT Toán 12 - Kết nối tri thức (SBT)
Xem tất cả
Bài 1. Tính đơn điệu và cực trị của hàm số.
Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Bài 3. Đường tiệm cận của đồ thị hàm số.
Bài 4. Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Bài 5. Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn.
Bài tập cuối chương 1