Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy | Toán 11 - Chân trời sáng tạo

Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy

Dưới đây là công thức Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy

A. Phương pháp giải

- Để chứng minh 3 điểm A; B; C thẳng hàng ta chứng minh 3 điểm đó cùng thuộc 1 đường thẳng hoặc chứng minh 3 điểm đó là điểm chung của hai mặt phẳng (α) và (β) - Khi đó chúng cùng thuộc giao tuyến của 2 mặt phẳng (α) và (β).

- Để chứng minh ba đường thẳng đồng quy ta có thể làm theo những cách sau:

   + Cách 1: chứng minh giao điểm của hai đường này là điểm chung của hai mặt phẳng mà giao tuyến là đường thẳng thứ ba

   + Cách 2: Dựa vào định lí: Ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến khi đó; ba giao tuyến đó đồng quy hoặc đôi một song song

B. Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AB và CD. Mặt phẳng (P) qua MN và cắt AD; BC lần lượt tại P và Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

A. I; A; C        B. I; B; D         C. I; A; B        D. I; C; D

Lời giải

Ta có:  (1)

Lại có

Từ (1) và (2) suy ra: I ∈ BD hay 3 điểm I; B; D thẳng hàng

Chọn B.

Ví dụ 2: Cho tứ diện SABC. Gọi L; M; N lần lượt là các điểm trên các cạnh SA; SB và AC sao cho LM không song song với AB và LN không song song với SC. Mặt phẳng (LMN) cắt các cạnh AB; BC và SC lần lượt tại K; I; J. Ba điểm nào sau đây thẳng hàng?

A. K; I và J        B. M; I và J        C. N ; I và J        D. M; K và J

Lời giải

Ta có

- M ∈ SB suy ra M isin; (LMN) ∩ (SBC)    (1)

- I ∈ BC ⊂ (SBC) và I ∈ NK ⊂ (LMN)

⇒ I ∈ (LMN) ∩ (SBC)   (2)

- J ∈ SC ⊂ (SBC) và J ∈ LN ⊂ (LMN)

⇒ J ∈ (LMN) ∩ (SBC)     (3)

Vậy M ; I; J thẳng hàng vì cùng thuộc giao tuyến của mp (LMN) và (SBC)

Chọn B

Ví dụ 3: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD; M là trung điểm CD; I thuộc đoạn AG; BI cắt mp (ACD) tại J. Chọn mệnh đề sai

A. Giao tuyến của (ACD) và (ABG) là AM

B. 3 điểm A; J; M thẳng hàng.

C. J là trung điểm của AM.

D. Giao tuyến của mp(ACD) và (BDJ) là DJ.

Lời giải

Ta xét các phương án:

   + Ta có: A là điểm chung thứ nhất giữa hai mp (ACD) và mp (GAB)    (1)

Do M là giao điểm của BG và CD nên: (2)

Từ (1) và (2) suy ra: giao tuyến của (ABG) và (ACD) là AM ⇒ A đúng.

+ Ta có ⇒ D đúng

+ Điểm I di động trên AG nên J có thể không phải là trung điểm của AM.⇒ C sai

Chọn C.

Ví dụ 4: Cho tứ diện ABCD. Gọi E; F; G là các điểm lần lượt thuộc các cạnh AB; AC; BD sao cho EF cắt BC tại I; EG cắt AD tại H. Ba đường thẳng nào sau đây đồng quy?

A. CD; EF; EG          B. CD; IG; HF          C. AB; IG; HF          D, AC; IG; BD

Lời giải

Gọi O là giao điểm của HF và IG . Ta có

- O ∈ HF mà HF ⊂ (ACD) suy ra O ∈ (ACD)

- O ∈ IG mà IG ⊂ (BCD) suy ra O ∈ (BCD)

Do đó O ∈ (ACD) ∩ (BCD)    (1)

Mà (ACD) ∩ (BCD) = CD   (2)

Từ (1) và (2), suy ra O ∈ CD.

Vậy ba đường thẳng CD; IG; HF đồng quy tại O.

Chọn B

Ví dụ 5: Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M . Gọi N là giao điểm của SD và mp (AMB). Mệnh đề nào sau đây đúng?

A. Ba đường thẳng AB; CD; MN đôi một song song

B. Ba đường thẳng AB; CD; MN đôi một cắt nhau

C. Ba đường thẳng AB; CD; MN đồng quy

D. Ba đường thẳng AB; CD; MN cùng thuộc một mặt phẳng

Lời giải

- Trong mp (ABCD) gọi I là giao điểm của AD và BC

Trong mp (SBC), gọi K là giao điểm của BM và SI

Trong mp (SAD); gọi N là giao điểm của AK và SD

Khi đó N là giao điểm của đường thẳng SD với mp(AMB)

- Gọi O là giao điểm của AB và CD. Ta có:

   + O ∈ AB mà AB ⊂ (AMB) suy ra O ∈ (AMB)

   + O ∈ CD mà CD ⊂ (SCD) suy ra O ∈ (SCD)

⇒ O ∈ (AMB) ∩ (SCD)    (1)

Mà MN = (AMB) ∩ (SCD)    (2)

Từ (1) và (2) , suy ra O ∈ MN.

Vậy ba đường thẳng AB; CD và MN đồng quy.

Chọn C

Ví dụ 6: Cho tứ diện ABCD có G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

A. AM = (ACD) ∩ (ABG)

B. A; J; M thẳng hàng

C. J là trung điểm AM

D. DJ = (ACD) ∩ (BDJ)

Lời giải

Chọn C

nên . Vậy A đúng.

+ Ba điểm A; J và M cùng thuộc hai mặt phẳng phân biệt (ACD) và (ABG) nên A; J; M thẳng hàng, vậy B đúng

+ Vì I là điểm tùy ý trên AG nên J không phải lúc nào cũng là trung điểm của AM.

Các công thức liên quan:

Các tính chất thừa nhận và cách xác định mặt phẳng trong hình không gian

Các tính chất thừa nhận và cách xác định mặt phẳng trong hình không gian

Công thức Toán 11 - Chân trời sáng tạo